Citation:

Please cite the 'CentiServer' paper and 'centiserve' r-package as:

Jalili M, Salehzadeh-Yazdi A, Asgari Y, Arab SS, Yaghmaie M, Ghavamzadeh A, Alimoghaddam K. (2015) CentiServer: A Comprehensive Resource, Web-Based Application and R Package for Centrality Analysis. PLoS ONE 10(11): e0143111.
DOI: 10.1371/journal.pone.0143111



Cited by:

  1. Hoscheit, P., Anthony, É., Vergu, E. Dynamic centrality measures for cattle trade networks (2021) 6 (1), art. no. 26, .
    Scopus Link - DOI: 10.1007/s41109-021-00368-5
  2. Zarghami, S.A., Dumrak, J. Unearthing vulnerability of supply provision in logistics networks to the black swan events: Applications of entropy theory and network analysis (2021) 215, art. no. 107798, .
    Scopus Link - DOI: 10.1016/j.ress.2021.107798
  3. Soares, G.H., Santiago, P.H.R., Biazevic, M.G.H., Michel-Crosato, E., Jamieson, L. Do network centrality measures predict dental outcomes of Indigenous children over time? (2021) 31 (5), pp. 634-646.
    Scopus Link - DOI: 10.1111/ipd.12749
  4. Manibalan, S., Harison Raj, A.B., Achary, A. Screening of Atherosclerotic Druggable Targets from the Proteome Network of Differentially Expressed Genes (2021) 19 (5), pp. 290-299.
    Scopus Link - DOI: 10.1089/adt.2021.021
  5. Mikryukov, V.S., Dulya, O.V., Likhodeevskii, G.A., Vorobeichik, E.L. Analysis of Ecological Networks in Multicomponent Communities of Microorganisms: Possibilities, Limitations, and Potential Errors (2021) 52 (3), pp. 188-200.
    Scopus Link - DOI: 10.1134/S1067413621030085
  6. Gündüç, S., Eryiğit, R. Time dependent correlations between the probability of a node being infected and its centrality measures (2021) 563, art. no. 125483, .
    Scopus Link - DOI: 10.1016/j.physa.2020.125483
  7. Windsor, F.M., Tavella, J., Rother, D.C., Raimundo, R.L.G., Devoto, M., Guimarães, P.R., Jr., Evans, D.M. Identifying plant mixes for multiple ecosystem service provision in agricultural systems using ecological networks (2021) .
    Scopus Link - DOI: 10.1111/1365-2664.14007
  8. Rasti, S., Vogiatzis, C. Novel centrality metrics for studying essentiality in protein–protein interaction networks based on group structures (2021) .
    Scopus Link - DOI: 10.1002/net.22071
  9. Neu, D., Saxton, G.D., Rahaman, A.S. Social Accountability, Ethics, and the Occupy Wall Street Protests (2021) .
    Scopus Link - DOI: 10.1007/s10551-021-04795-3
  10. Eremeev, I., Tatarka, M., Shuvaev, F., Cyganov, A. Comparative analysis of centrality measures of network nodes based on principal component analysis [АНАЛИЗ МЕР ЦЕНТРАЛЬНОСТИ УЗЛОВ СЕТЕЙ НА ОСНОВЕ МЕТОДА ГЛАВНЫХ КОМПОНЕНТ] (2020) 19 (6), pp. 1307-1331.
    Scopus Link - DOI: 10.15622/ia.2020.19.6.7
  11. Vignery, K., Laurier, W. A methodology and theoretical taxonomy for centrality measures: What are the best centrality indicators for student networks? (2020) 15 (12 December), art. no. e0244377, .
    Scopus Link - DOI: 10.1371/journal.pone.0244377
  12. Rakhsh-Khorshid, H., Samimi, H., Torabi, S., Sajjadi-Jazi, S.M., Samadi, H., Ghafouri, F., Asgari, Y., Haghpanah, V. Network analysis reveals essential proteins that regulate sodium-iodide symporter expression in anaplastic thyroid carcinoma (2020) 10 (1), art. no. 21440, .
    Scopus Link - DOI: 10.1038/s41598-020-78574-x
  13. Saqr, M., Nouri, J., Vartiainen, H., Tedre, M. Robustness and rich clubs in collaborative learning groups: a learning analytics study using network science (2020) 10 (1), art. no. 14445, .
    Scopus Link - DOI: 10.1038/s41598-020-71483-z
  14. Modarresi, A., Symons, J. Resilience and technological diversity in smart homes: A graph-theoretic approach to modeling IoT systems with integrated heterogeneous networks (2020) 11 (12), pp. 5825-5843.
    Scopus Link - DOI: 10.1007/s12652-020-02095-8
  15. Jain, M., Rastogi, H. Automatic Text Summarization using Soft-Cosine Similarity and Centrality Measures (2020) art. no. 9297583, pp. 1021-1028.
    Scopus Link - DOI: 10.1109/ICECA49313.2020.9297583
  16. Randhawa, V., Pathania, S. Advancing from protein interactomes and gene co-expression networks towards multi-omics-based composite networks: Approaches for predicting and extracting biological knowledge (2020) 19 (5-6), pp. 364-376.
    Scopus Link - DOI: 10.1093/bfgp/elaa015
  17. Salavaty, A., Ramialison, M., Currie, P.D. Integrated Value of Influence: An Integrative Method for the Identification of the Most Influential Nodes within Networks (2020) 1 (5), art. no. 100052, .
    Scopus Link - DOI: 10.1016/j.patter.2020.100052
  18. Zhang, J., Li, W., Zeng, M., Meng, X., Kurgan, L., Wu, F.-X., Li, M. NetEPD: A network-based essential protein discovery platform (2020) 25 (4), art. no. 8954872, pp. 542-552.
    Scopus Link - DOI: 10.26599/TST.2019.9010056
  19. Woo, S., Park, S.-Y., Kim, Y., Jeon, J.P., Lee, J.J., Hong, J.Y. The dynamics of respiratory microbiota during mechanical ventilation in patients with pneumonia (2020) 9 (3), art. no. 638, .
    Scopus Link - DOI: 10.3390/jcm9030638
  20. Ibrahim, M.H., Missaoui, R., Vaillancourt, J. Cross-Face Centrality: A New Measure for Identifying Key Nodes in Networks Based on Formal Concept Analysis (2020) 8, art. no. 9260144, pp. 206901-206913.
    Scopus Link - DOI: 10.1109/ACCESS.2020.3038306
  21. Rajeh, S., Savonnet, M., Leclercq, E., Cherifi, H. Interplay between Hierarchy and Centrality in Complex Networks (2020) 8, art. no. 9141232, pp. 129717-129742.
    Scopus Link - DOI: 10.1109/ACCESS.2020.3009525
  22. Einarsson, E., Wodo, O., Nalam, P.C., Broderick, S.R., Reyes, K.G., Bruce Pitman, E., Rajan, K. Data-driven visualization schema of a materials informatics curriculum: Convergence of materials science and information science (2020) 5 (7), pp. 293-303.
    Scopus Link - DOI: 10.1557/adv.2020.32
  23. Lu, H., Li, F., Sánchez, B.J., Zhu, Z., Li, G., Domenzain, I., Marcišauskas, S., Anton, P.M., Lappa, D., Lieven, C., Beber, M.E., Sonnenschein, N., Kerkhoven, E.J., Nielsen, J. A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism (2019) 10 (1), art. no. 3586, .
    Scopus Link - DOI: 10.1038/s41467-019-11581-3
  24. Ramos, P.I.P., Arge, L.W.P., Lima, N.C.B., Fukutani, K.F., de Queiroz, A.T.L. Leveraging User-Friendly Network Approaches to Extract Knowledge From High-Throughput Omics Datasets (2019) 10, art. no. 1120, .
    Scopus Link - DOI: 10.3389/fgene.2019.01120
  25. Fraunberger, E., Esser, M.J. Neuro-inflammation in pediatric traumatic brain injury—from mechanisms to inflammatory networks (2019) 9 (11), art. no. 319, .
    Scopus Link - DOI: 10.3390/brainsci9110319
  26. Alzubaidi, A.M.N., Al-Shamery, E.S. Churners prediction based on mining the content of social network taxonomy (2019) 8 (2 Special Issue 10), pp. 341-351.
    Scopus Link - DOI: 10.35940/ijrte.B1056.0982S1019
  27. Yin, D., Chen, X., Zeljic, K., Zhan, Y., Shen, X., Yan, G., Wang, Z. A graph representation of functional diversity of brain regions (2019) 9 (9), art. no. e01358, .
    Scopus Link - DOI: 10.1002/brb3.1358
  28. Oldham, S., Fulcher, B., Parkes, L., Arnatkeviciūtė, A., Suo, C., Fornito, A. Consistency and differences between centrality measures across distinct classes of networks (2019) 14 (7), art. no. e0220061, .
    Scopus Link - DOI: 10.1371/journal.pone.0220061
  29. Gazouli, M., Dovrolis, N., Franke, A., Spyrou, G.M., Sechi, L.A., Kolios, G. Differential genetic and functional background in inflammatory bowel disease phenotypes of a Greek population: A systems bioinformatics approach (2019) 11 (1), art. no. 31, .
    Scopus Link - DOI: 10.1186/s13099-019-0312-y
  30. Oldham, S., Fornito, A. The development of brain network hubs (2019) 36, art. no. 100607, .
    Scopus Link - DOI: 10.1016/j.dcn.2018.12.005
  31. Modarresi, A., Ymons, J. Modeling and graph analysis for enhancing resilience in smart homes (2019) 160, pp. 197-205.
    Scopus Link - DOI: 10.1016/j.procs.2019.09.471
  32. Saqr, M., Nouri, J., Jormanainen, I. A Learning Analytics Study of the Effect of Group Size on Social Dynamics and Performance in Online Collaborative Learning (2019) 11722 LNCS, pp. 466-479.
    Scopus Link - DOI: 10.1007/978-3-030-29736-7_35
  33. Pournoor, E., Elmi, N., Masoudi-Nejad, A. CatbNet: A multi network analyzer for comparing and analyzing the topology of biological networks (2019) 20 (1), pp. 69-75.
    Scopus Link - DOI: 10.2174/1389202919666181213101540
  34. Lázaro-Guevara, J.M., Flores-Robles, B.J., Garrido, K., Pinillos-Aransay, V., Elena-Ibáñez, A., Merino-Meléndez, L., López-Martínez, J.A., Victoriano-Lacalle, R. Gene's hubs in retinal diseases: A retinal disease network (2018) 4 (10), art. no. e00867, .
    Scopus Link - DOI: 10.1016/j.heliyon.2018.e00867
  35. Ashtiani, M., Salehzadeh-Yazdi, A., Razaghi-Moghadam, Z., Hennig, H., Wolkenhauer, O., Mirzaie, M., Jafari, M. A systematic survey of centrality measures for protein-protein interaction networks (2018) 12 (1), art. no. 80, .
    Scopus Link - DOI: 10.1186/s12918-018-0598-2
  36. Jalili, M., Gebhardt, T., Wolkenhauer, O., Salehzadeh-Yazdi, A. Unveiling network-based functional features through integration of gene expression into protein networks (2018) 1864 (6), pp. 2349-2359.
    Scopus Link - DOI: 10.1016/j.bbadis.2018.02.010
  37. Elhesha, R., Kahveci, T., Baiser, B. Motif centrality in food web networks (2017) 5 (4), art. no. cnw032, pp. 641-664.
    Scopus Link - DOI: 10.1093/comnet/cnw032
  38. Ghazzali, N., Ouellet, A. Comparative Study of Centrality Measures on Social Networks (2017) 301, pp. 3-16.
    Scopus Link - DOI: 10.1007/978-3-319-67633-3_1
  39. Weishaupt, H., Johansson, P., Engström, C., Nelander, S., Silvestrov, S., Swartling, F.J. Graph centrality based prediction of cancer genes (2016) 179, pp. 275-311.
    Scopus Link - DOI: 10.1007/978-3-319-42105-6_13