References list

Sort by reference title
Sort by reference year
Sort by reference first author
Sort by reference journal


References

  • Bavelas A., 1950. Communication Patterns in Task-Oriented Groups. Journal of the Acoustical Society of America, 22(6), pp.725-730.DOI: 10.1121/1.1906679
  • Katz L., 1953. A new status index derived from sociometric analysis. Psychometrika, 18(1), pp.39-43.DOI: 10.1007/BF02289026
  • Freeman, Linton. 1977. A set of measures of centrality based on betweenness. Sociometry. 40 (1): 35–41.DOI: 10.2307/3033543
  • Freeman L., 1978. Centrality in social networks conceptual clarification. Social Networks, 1(3), pp.215-239.DOI: 10.1016/0378-8733(78)90021-7
  • Seidman S., 1983. Network structure and minimum degree. Social Networks, 5(3), pp.269-287.DOI: 10.1016/0378-8733(83)90028-X
  • Bonacich, P., 1987. Power and centrality: A family of measures. American journal of sociology, 92(5), pp.1170-1182.DOI: 10.1086/228631
  • Freeman L., Borgatti S., White D., 1991. Centrality in valued graphs: A measure of betweenness based on network flow. Social Networks, 13(2), pp.141-154.DOI: 10.1016/0378-8733(91)90017-N
  • Hage P., Harary F., 1995. Eccentricity and centrality in networks. Social Networks, 17(1), pp.57-63.DOI: 10.1016/0378-8733(94)00248-9
  • Kleinberg, J.M., 1998, January. Authoritative sources in a hyperlinked environment. In Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms (pp. 668-677).
  • Valente T., Foreman R., 1998. Integration and radiality: Measuring the extent of an individual\'s connectedness and reachability in a network. Social Networks, 20(1), pp.89-105.DOI: 10.1016/S0378-8733(97)00007-5
  • Kleinberg J.M., 1999. Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), pp.604-632.DOI: 10.1145/324133.324140
  • Everett M.G., Borgatti S.P., 1999. The centrality of groups and classes. Journal of Mathematical Sociology, 23(3), pp.181-201.DOI: 10.1080/0022250X.1999.9990219
  • Marchiori M., Latora V., 2000. Harmony in the small-world. Physica A: Statistical Mechanics and its Applications, 285(3), pp.539-546.DOI: 10.1016/S0378-4371(00)00311-3
  • Bonacich P., Lloyd P., 2001. Eigenvector-like measures of centrality for asymmetric relations. Social Networks, 23(3), pp.191-201.DOI: 10.1016/S0378-8733(01)00038-7
  • Goh K., Kahng B., Kim D., 2001. Universal Behavior of Load Distribution in Scale-Free Networks. Physical Review Letters, 87(27), pp.278701-278701-4.DOI: 10.1103/PhysRevLett.87.278701
  • Maslov S., Sneppen K., 2002. Specificity and stability in topology of protein networks. Science, 296(5569), pp.910-913.DOI: 10.1126/science.1065103
  • Lempel R., Moran S., 2002. SALSA: The stochastic approach for link-structure analysis. ACM Transactions on Information Systems, 19(2), pp.131-160.DOI: 10.1145/382979.383041
  • Kamvar S., Schlosser M., Garcia-Molina H., 2003. The EigenTrust algorithm for reputation management in P2P networks. Proceedings of the 12th International Conference on World Wide Web, WWW 2003, , pp.640-651.DOI: 10.1145/775152.775242
  • White S., Smyth P., 2003. Algorithms for estimating relative importance in networks. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, , pp.266-275.DOI: 10.1145/956750.956782
  • Pržulj N., Wigle D., Jurisica I., 2004. Functional topology in a network of protein interactions. Bioinformatics, 20(3), pp.340-348.DOI: 10.1093/bioinformatics/btg415
  • Burt R., 2004. Structural holes and good ideas. American Journal of Sociology, 110(2), pp.349-399.DOI: 10.1086/421787
  • Bonacich P., Lloyd P., 2004. Calculating status with negative relations. Social Networks, 26(4), pp.331-338.DOI: 10.1016/j.socnet.2004.08.007
  • Barrat A., Barthélemy M., Pastor-Satorras R., Vespignani A., 2004. The architecture of complex weighted networks. Proceedings of the National Academy of Sciences of the United States of America, 101(11), pp.3747-3752.DOI: 10.1073/pnas.0400087101
  • Newman M.E.J., Girvan M., 2004. Finding and evaluating community structure in networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 69(2 2).DOI: 10.1103/PhysRevE.69.026113
  • Noh J., Rieger H., 2004. Random Walks on Complex Networks. Physical Review Letters, 92(11).DOI: 10.1103/PhysRevLett.92.118701
  • Estrada E., Rodríguez-Velázquez J.A., 2005. Spectral measures of bipartivity in complex networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 72(4).DOI: 10.1103/PhysRevE.72.046105
  • Stelzl U., Worm U., Lalowski M., Haenig C., Brembeck F.H., Goehler H., Stroedicke M., Zenkner M., Schoenherr A., Koeppen S., Timm J., Mintzlaff S., Abraham C., Bock N., Kietzmann S., Goedde A., Toksöz E., Droege A., Krobitsch S., Korn B., Birchmeier W., Lehrach H., Wanker E.E., 2005. A human protein-protein interaction network: A resource for annotating the proteome. Cell, 122(6), pp.957-968.DOI: 10.1016/j.cell.2005.08.029
  • Brandes, U., 2005. Network analysis: methodological foundations (Vol. 3418). Springer Science & Business Media.
  • Brandes U., Fleischer D., 2005. Centrality measures based on current flow. Lecture Notes in Computer Science, 3404, pp.533-544.DOI: 10.1007/978-3-540-31856-9_44
  • Everett M., Borgatti S.P., 2005. Ego network betweenness. Social Networks, 27(1), pp.31-38.DOI: 10.1016/j.socnet.2004.11.007
  • Estrada E., Rodríguez-Velázquez J.A., 2005. Subgraph centrality in complex networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 71(5).DOI: 10.1103/PhysRevE.71.056103
  • Newman M.E.J., 2006. Finding community structure in networks using the eigenvectors of matrices. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 74(3).DOI: 10.1103/PhysRevE.74.036104
  • Dangalchev C., 2006. Residual closeness in networks. Physica A: Statistical Mechanics and its Applications, 365(2), pp.556-564.DOI: 10.1016/j.physa.2005.12.020
  • Borgatti S., Everett M., 2006. A Graph-theoretic perspective on centrality. Social Networks, 28(4), pp.466-484.DOI: 10.1016/j.socnet.2005.11.005
  • Del Sol A., Fujihashi H., Amoros D., Nussinov R., 2006. Residues crucial for maintaining short paths in network communication mediate signaling in proteins. Molecular Systems Biology, 2.DOI: 10.1038/msb4100063
  • Tew K.L., Li X.L., Tan S.H., 2007. Functional centrality: detecting lethality of proteins in protein interaction networks.. Genome informatics. International Conference on Genome Informatics, 19, pp.166-177.DOI: 10.1142/9781860949852_0015
  • Koschützki D., Schwöbbermeyer H., Schreiber F., 2007. Ranking of network elements based on functional substructures. Journal of Theoretical Biology, 248(3), pp.471-479.DOI: 10.1016/j.jtbi.2007.05.038
  • Ortiz-Arroyo D., Hussain D., 2008. An information theory approach to identify sets of key players. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5376 LNCS, pp.15-26.DOI: 10.1007/978-3-540-89900-6_5
  • Lin C., Chin C., Wu H., Chen S., Ho C., Ko M., 2008. Hubba: hub objects analyzer--a framework of interactome hubs identification for network biology.. Nucleic acids research, 36(Web Server issue).DOI: 10.1093/nar/gkn257
  • Nepusz T., Petróczi A., Négyessy L., Bazsó F., 2008. Fuzzy communities and the concept of bridgeness in complex networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 77(1).DOI: 10.1103/PhysRevE.77.016107
  • Hwang W., Kim T., Ramanathan M., Zhang A., 2008. Bridging centrality: Graph mining from element level to group level. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, , pp.336-344.DOI: 10.1145/1401890.1401934
  • Jianwei W., Lili R., Tianzhu G., 2008. A new measure of node importance in complex networks with tunable parameters. 2008 International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2008, .DOI: 10.1109/WiCom.2008.1170
  • Potapov A., Goemann B., Wingender E., 2008. The pairwise disconnectivity index as a new metric for the topological analysis of regulatory networks. BMC Bioinformatics, 9.DOI: 10.1186/1471-2105-9-227
  • Jackson, M. O. 2008. Social and economic networks, volume 3. Princeton university press.
  • Piraveenan M., Prokopenko M., Zomaya A., 2008. Local assortativeness in scale-free networks. EPL, 84(2).DOI: 10.1209/0295-5075/84/28002
  • Wang G., Shen Y., Luan E., 2008. Measure of centrality based on modularity matrix. Progress in Natural Science, 18(8), pp.1043-1047.DOI: 10.1016/j.pnsc.2008.03.015
  • del Rio G., Koschützki D., Coello G., 2009. How to identify essential genes from molecular networks?. BMC Systems Biology, 3, pp.102.DOI: 10.1186/1752-0509-3-102
  • Kolaczyk E., Chua D., Barthélemy M., 2009. Group betweenness and co-betweenness: Inter-related notions of coalition centrality. Social Networks, 31(3), pp.190-203.DOI: 10.1016/j.socnet.2009.02.003
  • Estrada E., Higham D.J., Hatano N., 2009. Communicability betweenness in complex networks. Physica A: Statistical Mechanics and its Applications, 388(5), pp.764-774.DOI: 10.1016/j.physa.2008.11.011
  • Korn A., Schubert A., Telcs A., 2009. Lobby index in networks. Physica A: Statistical Mechanics and its Applications, 388(11), pp.2221-2226.DOI: 10.1016/j.physa.2009.02.013
  • Sinclair P., 2009. Network centralization with the Gil Schmidt power centrality index. Social Networks, 31(3), pp.214-219.DOI: 10.1016/j.socnet.2009.04.004
  • Deng H., Lyu M., King I., 2009. A generalized Co-HITS algorithm and its application to bipartite graphs. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, , pp.239-247.DOI: 10.1145/1557019.1557051
  • Kirkland S., 2010. Algebraic connectivity for vertex-deleted subgraphs, and a notion of vertex centrality. Discrete Mathematics, 310(4), pp.911-921.DOI: 10.1016/j.disc.2009.10.011
  • Prifti E., Zucker J.D., Clément K., Henegar C., 2010. Interactional and functional centrality in transcriptional co-expression networks. Bioinformatics, 26(24), pp.3083-3089.DOI: 10.1093/bioinformatics/btq591
  • Weng J., Lim E.P., Jiang J., He Q., 2010. TwitterRank: Finding topic-sensitive influential twitterers. WSDM 2010 - Proceedings of the 3rd ACM International Conference on Web Search and Data Mining, , pp.261-270.DOI: 10.1145/1718487.1718520
  • Ilyas M., Radha H., 2010. A KLT-inspired node centrality for identifying influential neighborhoods in graphs. 2010 44th Annual Conference on Information Sciences and Systems, CISS 2010, .DOI: 10.1109/CISS.2010.5464971
  • Ranjan, G. and Zhang, Z.L., 2010. On random eccentricity in complex networks. Tech. Report.
  • Joyce K., Laurienti P., Burdette J., Hayasaka S., 2010. A new measure of centrality for brain networks. PLoS ONE, 5(8).DOI: 10.1371/journal.pone.0012200
  • Fu L., Gao L., Ma X., 2010. A centrality measure based on spectral optimization of modularity density. Science in China, Series F: Information Sciences, 53(9), pp.1727-1737.DOI: 10.1007/s11432-010-4043-4
  • Estrada E., Hatano N., 2010. A vibrational approach to node centrality and vulnerability in complex networks. Physica A: Statistical Mechanics and its Applications, 389(17), pp.3648-3660.DOI: 10.1016/j.physa.2010.03.030
  • Avrachenkov K., Borkar V., Nemirovsky D., 2010. Quasi-stationary distributions as centrality measures for the giant strongly connected component of a reducible graph. Journal of Computational and Applied Mathematics, 234(11), pp.3075-3090.DOI: 10.1016/j.cam.2010.02.001
  • Richters O., Peixoto T., 2011. Trust transitivity in social networks. PLoS ONE, 6(4).DOI: 10.1371/journal.pone.0018384
  • Chua H., Bhowmick S., Tucker-Kellogg L., Zhao Q., Dewey C., Yu H., 2011. PANI: A novel algorithm for fast discovery of Putative TArget Nodes in signaling networks. 2011 ACM Conference on Bioinformatics, Computational Biology and Biomedicine, BCB 2011, , pp.284-288.DOI: 10.1145/2147805.2147836
  • Kundu S., Murthy C., Pal S., 2011. A new centrality measure for influence maximization in social networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6744 LNCS, pp.242-247.DOI: 10.1007/978-3-642-21786-9_40
  • Ghosh R., Lerman K., 2011. Parameterized centrality metric for network analysis. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 83(6).DOI: 10.1103/PhysRevE.83.066118
  • Natale F., Savini L., Giovannini A., Calistri P., Candeloro L., Fiore G., 2011. Evaluation of risk and vulnerability using a Disease Flow Centrality measure in dynamic cattle trade networks. Preventive Veterinary Medicine, 98(2-3), pp.111-118.DOI: 10.1016/j.prevetmed.2010.11.013
  • Zhao S., Rousseau R., Ye F., 2011. H-Degree as a basic measure in weighted networks. Journal of Informetrics, 5(4), pp.668-677.DOI: 10.1016/j.joi.2011.06.005
  • Alahakoon T., Tripathi R., Kourtellis N., Simha R., Iamnitchi A., 2011. K-path centrality: A new centrality measure in social networks. Proceedings of the 4th Workshop on Social Network Systems, SNS\'11, .DOI: 10.1145/1989656.1989657
  • Li M., Wang J., Chen X., Wang H., Pan Y., 2011. A local average connectivity-based method for identifying essential proteins from the network level. Computational Biology and Chemistry, 35(3), pp.143-150.DOI: 10.1016/j.compbiolchem.2011.04.002
  • Lü L., Zhang Y., Yeung C., Zhou T., 2011. Leaders in social networks, the delicious case. PLoS ONE, 6(6).DOI: 10.1371/journal.pone.0021202
  • Kermarrec A.M., Le Merrer E., Sericola B., Trédan G., 2011. Second order centrality: Distributed assessment of nodes criticity in complex networks. Computer Communications, 34(5), pp.619-628.DOI: 10.1016/j.comcom.2010.06.007
  • Wang H., Li M., Wang J., Pan Y., 2011. A new method for identifying essential proteins based on edge clustering coefficient. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6674 LNBI, pp.87-98.DOI: 10.1007/978-3-642-21260-4_12
  • Milenković T., Memišević V., Bonato A., Pržulj N., 2011. Dominating biological networks. PLoS ONE, 6(8).DOI: 10.1371/journal.pone.0023016
  • Agryzkov T., Oliver J., Tortosa L., Vicent J., 2012. An algorithm for ranking the nodes of an urban network based on the concept of PageRank vector. Applied Mathematics and Computation, 219(4), pp.2186-2193.DOI: 10.1016/j.amc.2012.08.064
  • Shanahan M., Wildie M., 2012. Knotty-centrality: Finding the connective core of a complex network. PLoS ONE, 7(5).DOI: 10.1371/journal.pone.0036579
  • Li M., Zhang H., Wang J., Pan Y., 2012. A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data. BMC Systems Biology, 6.DOI: 10.1186/1752-0509-6-15
  • Liu Y., Slotine J., Barabási A., 2012. Control Centrality and Hierarchical Structure in Complex Networks. PLoS ONE, 7(9).DOI: 10.1371/journal.pone.0044459
  • Ovelgönne M., Kang C., Sawant A., Subrahmanian V., 2012. Covertness centrality in networks. Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2012, , pp.863-870.DOI: 10.1109/ASONAM.2012.156
  • Wang J., Li M., Wang H., Pan Y., 2012. Identification of essential proteins based on edge clustering coefficient. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(4), pp.1070-1080.DOI: 10.1109/TCBB.2011.147
  • Qi X., Fuller E., Wu Q., Wu Y., Zhang C., 2012. Laplacian centrality: A new centrality measure for weighted networks. Information Sciences, 194, pp.240-253.DOI: 10.1016/j.ins.2011.12.027
  • Everett M., Borgatti S., 2012. Categorical attribute based centrality: E-I and G-F centrality. Social Networks, 34(4), pp.562-569.DOI: 10.1016/j.socnet.2012.06.002
  • De Meo P., Ferrara E., Fiumara G., Ricciardello A., 2012. A novel measure of edge centrality in social networks. Knowledge-Based Systems, 30, pp.136-150.DOI: 10.1016/j.knosys.2012.01.007
  • Ercsey-Ravasz M., Lichtenwalter R.N., Chawla N.V., Toroczkai Z., 2012. Range-limited centrality measures in complex networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 85(6).DOI: 10.1103/PhysRevE.85.066103
  • Chen D., Lü L., Shang M., Zhang Y., Zhou T., 2012. Identifying influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 391(4), pp.1777-1787.DOI: 10.1016/j.physa.2011.09.017
  • Caporossi, G., Paiva, M., Vukičevic, D. and Segatto, M., 2012. Centrality and betweenness: vertex and edge decomposition of the Wiener index. MATCH-Communications in Mathematical and Computer Chemistry, 68(1), p.293.
  • Cheng Y., Lee R., Lim E., Zhu F., 2013. DelayFlow centrality for identifying critical nodes in transportation networks. Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013, , pp.1462-1463.DOI: 10.1145/2492517.2492595
  • Sun H., Liang Y., Chen L., Wang Y., Du W., Shi X., 2013. An improved sum of edge clustering coefficient method for essential protein identification. Journal of Bionanoscience, 7(4), pp.386-390.DOI: 10.1166/jbns.2013.1152
  • Lee T., Lee H., Hwang K., 2013. Identifying superspreaders for epidemics using R0-adjusted network centrality. Proceedings of the 2013 Winter Simulation Conference - Simulation: Making Decisions in a Complex World, WSC 2013, , pp.2239-2249.DOI: 10.1109/WSC.2013.6721600
  • Chen D.B., Gao H., Lü L., Zhou T., 2013. Identifying influential nodes in large-scale directed networks: The role of clustering. PLoS ONE, 8(10).DOI: 10.1371/journal.pone.0077455
  • Zhang X., Xu J., Xiao W.x., 2013. A New Method for the Discovery of Essential Proteins. PLoS ONE, 8(3).DOI: 10.1371/journal.pone.0058763
  • Wang, Y., Chen, G. 2013, A centrality measure based on two layer neighbors for complex networks. 9: 1 (2013) 25–32.
  • Piraveenan M., Prokopenko M., Hossain L., 2013. Percolation Centrality: Quantifying Graph-Theoretic Impact of Nodes during Percolation in Networks. PLoS ONE, 8(1).DOI: 10.1371/journal.pone.0053095
  • Wang Q., Yu X., Zhang X., 2013. A connectionist model-based approach to centrality discovery in social networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8178 LNAI, pp.82-94.DOI: 10.1007/978-3-319-04048-6_8
  • Faghani M., Nguyen U., 2013. A study of xss worm propagation and detection mechanisms in online social networks. IEEE Transactions on Information Forensics and Security, 8(11), pp.1815-1826.DOI: 10.1109/TIFS.2013.2280884
  • Avrachenkov K., Litvak N., Medyanikov V., Sokol M., 2013. Alpha current flow betweenness centrality. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8305 LNCS, pp.106-117.DOI: 10.1007/978-3-319-03536-9_9
  • Kong, R., Han, C., Guo, T. and Pei, W., 2013. An Energy-Based Centrality for Electrical Networks. Energy and Power Engineering, 5(04), p.597.DOI: 10.4236/epe.2013.54B115
  • Šikić M., Lančić A., Antulov-Fantulin N., Štefančić H., 2013. Epidemic centrality - Is there an underestimated epidemic impact of network peripheral nodes?. European Physical Journal B, 86(10).DOI: 10.1140/epjb/e2013-31025-5
  • Szalay K., Csermely P., 2013. Perturbation Centrality and Turbine: A Novel Centrality Measure Obtained Using a Versatile Network Dynamics Tool. PLoS ONE, 8(10).DOI: 10.1371/journal.pone.0078059
  • Simko G., Csermely P., 2013. Nodes Having a Major Influence to Break Cooperation Define a Novel Centrality Measure: Game Centrality. PLoS ONE, 8(6).DOI: 10.1371/journal.pone.0067159
  • Davidsen S., Padmavathamma M., 2014. A fuzzy closeness centrality using andness-direction to control degree of closeness. 1st International Conference on Networks and Soft Computing, ICNSC 2014 - Proceedings, , pp.203-208.DOI: 10.1109/CNSC.2014.6906711
  • Ide, K., Namatame, A., Ponnambalam, L., Xiuju, F. and Goh, R.S.M., 2014. A new centrality measure for probabilistic diffusion in network. Advances in Computer Science: An International Journal, 3(5), pp.115-121.
  • Jian, X., 2014. KSC centralized index model in complex network. Journal of Networks, 9(5), p.1245.
  • Tang X., Wang J., Zhong J., Pan Y., 2014. Predicting essential proteins basedon weighted degree centrality. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(2), pp.407-418.DOI: 10.1109/TCBB.2013.2295318
  • Zhang G., Liu L., Feng Y., Shao Z., Li Y., 2014. Cext-N index: a network node centrality measure for collaborative relationship distribution. Scientometrics, 101(1), pp.291-307.DOI: 10.1007/s11192-014-1358-8
  • Joseph A., Chen G., 2014. Composite centrality: A natural scale for complex evolving networks. Physica D: Nonlinear Phenomena, 267, pp.58-67.DOI: 10.1016/j.physd.2013.08.005
  • Bae J., Kim S., 2014. Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Physica A: Statistical Mechanics and its Applications, 395, pp.549-559.DOI: 10.1016/j.physa.2013.10.047
  • Wang Y., Sun H., Du W., Blanzieri E., Viero G., Xu Y., Liang Y., 2014. Identification of essential proteins based on ranking Edge-Weights in Protein-Protein Interaction networks. PLoS ONE, 9(9).DOI: 10.1371/journal.pone.0108716
  • Pal S., Kundu S., Murthy C., 2014. Centrality measures, upper bound, and influence maximization in large scale directed social networks. Fundamenta Informaticae, 130(3), pp.317-342.DOI: 10.3233/FI-2014-994
  • Huang, S., Cui, H. and Ding, Y., 2014. Evaluation of node importance in complex networks. arXiv preprint arXiv:1402.5743.
  • Luo J., Zhang N., 2014. Prediction of Essential Proteins Based On Edge Clustering Coefficient and Gene Ontology Information. Journal of Biological Systems, 22(3), pp.339-351.DOI: 10.1142/S0218339014500119
  • Niu J., Fan J., Wang L., Stojinenovic M., 2014. K-hop centrality metric for identifying influential spreaders in dynamic large-scale social networks. 2014 IEEE Global Communications Conference, GLOBECOM 2014, , pp.2954-2959.DOI: 10.1109/GLOCOM.2014.7037257
  • Wang P., Lü J., Yu X., 2014. Identification of important nodes in directed biological networks: A network motif approach. PLoS ONE, 9(8).DOI: 10.1371/journal.pone.0106132
  • Smith J., Halgin D., Kidwell-Lopez V., Labianca G., Brass D., Borgatti S., 2014. Power in politically charged networks. Social Networks, 36(1), pp.162-176.DOI: 10.1016/j.socnet.2013.04.007
  • Everett M., Borgatti S., 2014. Networks containing negative ties. Social Networks, 38(1), pp.111-120.DOI: 10.1016/j.socnet.2014.03.005
  • Agryzkov T., Oliver J., Tortosa L., Vicent J., 2014. A new betweenness centrality measure based on an algorithm for ranking the nodes of a network. Applied Mathematics and Computation, 244, pp.467-478.DOI: 10.1016/j.amc.2014.07.026
  • Wang P., Yu X., Lü J., 2014. Identification and evolution of structurally dominant nodes in protein-protein interaction networks. IEEE Transactions on Biomedical Circuits and Systems, 8(1), pp.87-97.DOI: 10.1109/TBCAS.2014.2303160
  • Pu C., Cui W., Yang J., 2014. Tunable path centrality: Quantifying the importance of paths in networks. Physica A: Statistical Mechanics and its Applications, 405, pp.267-277.DOI: 10.1016/j.physa.2014.03.039
  • Li Q., Zhou T., Lü L., Chen D., 2014. Identifying influential spreaders by weighted LeaderRank. Physica A: Statistical Mechanics and its Applications, 404, pp.47-55.DOI: 10.1016/j.physa.2014.02.041
  • Martin T., Zhang X., Newman M.E.J., 2014. Localization and centrality in networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 90(5).DOI: 10.1103/PhysRevE.90.052808
  • Yazici, M. and Sarac, M., 2015. Centrality measures with a new index called E-User (Effective User) Index for determiningthe most effective user in Twitter Online Social Network. International Journal on Computer Science and Engineering, 7(1), p.1.
  • Masaaki Miyashita and Norihiko Shinomiya. 2015, Modified Betweenness Centrality to Identify Relay Nodes in Data Networks. ACHI 2015 : The Eighth International Conference on Advances in Computer-Human Interactions.
  • Avrachenkov K., Mazalov V., Tsynguev B., 2015. Beta current flow centrality for weighted networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9197, pp.216-227.DOI: 10.1007/978-3-319-21786-4_19
  • Lulli A., Ricci L., Carlini E., Dazzi P., 2015. Distributed Current Flow Betweenness Centrality. International Conference on Self-Adaptive and Self-Organizing Systems, SASO, 2015-October, pp.71-80.DOI: 10.1109/SASO.2015.15
  • Li C., Li Q., Van Mieghem P., Stanley H.E., Wang H., 2015. Correlation between centrality metrics and their application to the opinion model. European Physical Journal B, 88(3), pp.1-13.DOI: 10.1140/epjb/e2015-50671-y
  • Du, Y., Gao, C., Chen, X., Hu, Y., Sadiq, R. and Deng, Y., 2015. A new closeness centrality measure via effective distance in complex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(3), p.033112.DOI: 10.1063/1.4916215
  • Qi, Y. and Luo, J., 2015. Prediction of essential proteins based on local interaction density. IEEE/ACM transactions on computational biology and bioinformatics, 13(6), pp.1170-1182.DOI: 10.1109/TCBB.2015.2509989
  • Tsiotas D., Polyzos S., 2015. Introducing a new centrality measure from the transportation network analysis in Greece. Annals of Operations Research, 227(1), pp.93-117.DOI: 10.1007/s10479-013-1434-0
  • Wang Z., Dueñas-Osorio L., Padgett J., 2015. A new mutually reinforcing network node and link ranking algorithm. Scientific Reports, 5.DOI: 10.1038/srep15141
  • Qi X., Fuller E., Luo R., Zhang C.Q., 2015. A novel centrality method for weighted networks based on the Kirchhoff polynomial. Pattern Recognition Letters, 58, pp.51-60.DOI: 10.1016/j.patrec.2015.02.007
  • Lawyer G., 2015. Understanding the influence of all nodes in a network. Scientific Reports, 5.DOI: 10.1038/srep08665
  • De Domenico M., Solé-Ribalta A., Omodei E., Gómez S., Arenas A., 2015. Ranking in interconnected multilayer networks reveals versatile nodes. Nature Communications, 6.DOI: 10.1038/ncomms7868
  • Mavroforakis C., Mathioudakis M., Gionis A., 2016. Absorbing random-walk centrality: Theory and algorithms. Proceedings - IEEE International Conference on Data Mining, ICDM, 2016-January, pp.901-906.DOI: 10.1109/ICDM.2015.103
  • Agryzkov T., Tortosa L., Vicent J., 2016. New highlights and a new centrality measure based on the Adapted PageRank Algorithm for urban networks. Applied Mathematics and Computation, 291, pp.14-29.DOI: 10.1016/j.amc.2016.06.036
  • Zhang, W., 2016. Screening node attributes that significantly influence node centrality in the network. Selforganizology, 3(3), pp.75-86.
  • Aleskerov, F.T., Meshcheryakova, N. and Shvydun, S., 2016. Centrality measures in networks based on nodes attributes, long-range interactions and group influence. Long-Range Interactions and Group Influence.DOI: 10.2139/ssrn.3196962
  • Aleskerov F., Andrievskaya I., Permjakova E., 2016. Key borrowers detected by the intensities of their short-range interactions. Springer Proceedings in Mathematics and Statistics, 156, pp.267-280.DOI: 10.1007/978-3-319-29608-1_18
  • Jensen P., Morini M., Karsai M., Venturini T., Vespignani A., Jacomy M., Cointet J.P., Mercklé P., Fleury E., 2016. Detecting global bridges in networks. Journal of Complex Networks, 4(3), pp.319-329.DOI: 10.1093/comnet/cnv022
  • Chakraborty T., Narayanam R., 2016. Cross-layer betweenness centrality in multiplex networks with applications. 2016 IEEE 32nd International Conference on Data Engineering, ICDE 2016, , pp.397-408.DOI: 10.1109/ICDE.2016.7498257
  • Li X., Liu Y., Jiang Y., Liu X., 2016. Identifying social influence in complex networks: A novel conductance eigenvector centrality model. Neurocomputing, 210, pp.141-154.DOI: 10.1016/j.neucom.2015.11.123
  • Chen C., Wang W., Wang X., 2016. Efficient maximum closeness centrality group identification. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9877 LNCS, pp.43-55.DOI: 10.1007/978-3-319-46922-5_4
  • Coutinho R., Boukerche A., Vieira L., Loureiro A., 2016. A novel centrality metric for topology control in underwater sensor networks. MSWiM 2016 - Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, , pp.205-212.DOI: 10.1145/2988287.2989162
  • Vukičević, D., Škrekovski, R. and Tepeh, A., 2016. Relative edge betweenness centrality. Ars Mathematica Contemporanea, 12(2), pp.261-270.DOI: 10.26493/1855-3974.863.169
  • Fushimi T., Satoh T., Saito K., Kazama K., Kando N., 2016. Content centrality measure for networks: Introducing distance-based Decay weights. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10047 LNCS, pp.40-54.DOI: 10.1007/978-3-319-47874-6_4
  • Kang C., Kraus S., Molinaro C., Spezzano F., Subrahmanian V., 2016. Diffusion centrality: A paradigm to maximize spread in social networks. Artificial Intelligence, 239, pp.70-96.DOI: 10.1016/j.artint.2016.06.008
  • Liu J., Lin J., Guo Q., Zhou T., 2016. Locating influential nodes via dynamics-sensitive centrality. Scientific Reports, 6.DOI: 10.1038/srep21380
  • Lockhart J., Minello G., Rossi L., Severini S., Torsello A., 2016. Edge centrality via the Holevo quantity. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10029 LNCS, pp.143-152.DOI: 10.1007/978-3-319-49055-7_13
  • Stai E., Sotiropoulos K., Karyotis V., Papavassiliou S., 2016. Hyperbolic Traffic Load Centrality for large-scale complex communications networks. 2016 23rd International Conference on Telecommunications, ICT 2016, .DOI: 10.1109/ICT.2016.7500371
  • Mazalov V., Tsynguev B., 2016. Kirchhoff centrality measure for collaboration network. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9795, pp.147-157.DOI: 10.1007/978-3-319-42345-6_13
  • MacKer J., 2016. An improved local bridging centrality model for distributed network analytics. Proceedings - IEEE Military Communications Conference MILCOM, , pp.600-605.DOI: 10.1109/MILCOM.2016.7795393
  • Nie T., Guo Z., Zhao K., Lu Z., 2016. Using mapping entropy to identify node centrality in complex networks. Physica A: Statistical Mechanics and its Applications, 453, pp.290-297.DOI: 10.1016/j.physa.2016.02.009
  • Madotto A., Liu J., 2016. Super-Spreader Identification Using Meta-Centrality. Scientific Reports, 6.DOI: 10.1038/srep38994
  • Agha Mohammad Ali Kermani M., Badiee A., Aliahmadi A., Ghazanfari M., Kalantari H., 2016. Introducing a procedure for developing a novel centrality measure (Sociability Centrality) for social networks using TOPSIS method and genetic algorithm. Computers in Human Behavior, 56, pp.295-305.DOI: 10.1016/j.chb.2015.11.008
  • Saito K., Kimura M., Ohara K., Motoda H., 2016. Super mediator - A new centrality measure of node importance for information diffusion over social network. Information Sciences, 329, pp.985-1000.DOI: 10.1016/j.ins.2015.03.034
  • Karabekmez M., Kirdar B., 2016. A novel topological centrality measure capturing biologically important proteins. Molecular BioSystems, 12(2), pp.666-673.DOI: 10.1039/C5MB00732A
  • Zhang J., Chen D., Dong Q., Zhao Z., 2016. Identifying a set of influential spreaders in complex networks. Scientific Reports, 6.DOI: 10.1038/srep27823
  • Ma L.L., Ma C., Zhang H.F., Wang B.H., 2016. Identifying influential spreaders in complex networks based on gravity formula. Physica A: Statistical Mechanics and its Applications, 451, pp.205-212.DOI: 10.1016/j.physa.2015.12.162
  • Pedroche F., Romance M., Criado R., 2016. A biplex approach to PageRank centrality: From classic to multiplex networks. Chaos, 26(6).DOI: 10.1063/1.4952955
  • Li J., Dueñas-Osorio L., Chen C., Shi C., 2017. AC power flow importance measures considering multi-element failures. Reliability Engineering and System Safety, 160, pp.89-97.DOI: 10.1016/j.ress.2016.11.010
  • Khadangi E., Bagheri A., 2017. Presenting novel application-based centrality measures for finding important users based on their activities and social behavior. Computers in Human Behavior, 73, pp.64-79.DOI: 10.1016/j.chb.2017.03.014
  • Punithavelan, N. and Jaganathan, B., 2017. New web page rank method using HITS Centrality. Global Journal of Pure and Applied Mathematics, 13(10), pp.7229-7235.
  • Cickovski T., Peake E., Aguiar-Pulido V., Narasimhan G., 2017. ATria: A novel centrality algorithm applied to biological networks. BMC Bioinformatics, 18.DOI: 10.1186/s12859-017-1659-z
  • Li, M., Lu, Y., Niu, Z. and Wu, F.X., 2017. United Complex Centrality for Identification of Essential Proteins from PPI Networks. IEEE/ACM transactions on computational biology and bioinformatics, 14(2), pp.370-380.DOI: 10.1109/TCBB.2015.2394487
  • Nathan E., Zakrzewska A., Riedy J., Bader D., 2017. Local community detection in dynamic graphs using personalized centrality. Algorithms, 10(3).DOI: 10.3390/a10030102
  • Fei L., Mo H., Deng Y., 2017. A new method to identify influential nodes based on combining of existing centrality measures. Modern Physics Letters B, 31(26).DOI: 10.1142/S0217984917502438
  • Izaac J.A., Zhan X., Bian Z., Wang K., Li J., Wang J.B., Xue P., 2017. Centrality measure based on continuous-time quantum walks and experimental realization. Physical Review A, 95(3).DOI: 10.1103/PhysRevA.95.032318
  • Kaur M., Singh S., 2017. Ranking based comparative analysis of graph centrality measures to detect negative nodes in online social networks. Journal of Computational Science, 23, pp.91-108.DOI: 10.1016/j.jocs.2017.10.018
  • Mistry D., Wise R.P., Dickerson J.A., 2017. DiffSLC: A graph centrality method to detect essential proteins of a protein-protein interaction network. PLoS ONE, 12(11).DOI: 10.1371/journal.pone.0187091
  • Guo L., Zhang W.Y., Luo Z.J., Gao F.J., Zhang Y.C., 2017. A dynamical approach to identify vertices′ centrality in complex networks. Physics Letters, Section A: General, Atomic and Solid State Physics, 381(48), pp.3972-3977.DOI: 10.1016/j.physleta.2017.10.033
  • Wang S., Du Y., Deng Y., 2017. A new measure of identifying influential nodes: Efficiency centrality. Communications in Nonlinear Science and Numerical Simulation, 47, pp.151-163.DOI: 10.1016/j.cnsns.2016.11.008
  • Qiao T., Shan W., Zhou C., 2017. How to identify the most powerful node in complex networks? A novel entropy centrality approach. Entropy, 19(11).DOI: 10.3390/e19110614
  • Singh R., Chakraborty A., Manoj B., 2017. GFT centrality: A new node importance measure for complex networks. Physica A: Statistical Mechanics and its Applications, 487, pp.185-195.DOI: 10.1016/j.physa.2017.06.018
  • Zhao J., Wang P., Lui J.C.S., Towsley D., Guan X., 2017. I/O-efficient calculation of H-group closeness centrality over disk-resident graphs. Information Sciences, 400-401, pp.105-128.DOI: 10.1016/j.ins.2017.03.017
  • Stai E., Sotiropoulos K., Karyotis V., Papavassiliou S., 2017. Hyperbolic Embedding for Efficient Computation of Path Centralities and Adaptive Routing in Large-Scale Complex Commodity Networks. IEEE Transactions on Network Science and Engineering, 4(3), pp.140-153.DOI: 10.1109/TNSE.2017.2690258
  • Taheri S.M., Mahyar H., Firouzi M., Ghalebi E., Grosu R., Movaghar A., 2017. HellRank: a Hellinger-based centrality measure for bipartite social networks. Social Network Analysis and Mining, 7(1).DOI: 10.1007/s13278-017-0440-7
  • Rossi L., Torsello A., 2017. Measuring vertex centrality using the Holevo quantity. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10310 LNCS, pp.154-164.DOI: 10.1007/978-3-319-58961-9_14
  • Xu S., Wang P., Lü J., 2017. Iterative Neighbour-Information Gathering for Ranking Nodes in Complex Networks. Scientific Reports, 7.DOI: 10.1038/srep41321
  • Meghanathan, N., 2017. A computationally lightweight and localized centrality metric in lieu of betweenness centrality for complex network analysis. Vietnam Journal of Computer Science, 4(1), pp.23-38.DOI: 10.1007/s40595-016-0073-1
  • Reiffers-Masson A., Labatut V., 2017. Opinion-based centrality in multiplex networks: A convex optimization approach. Network Science, 5(2), pp.213-234.DOI: 10.1017/nws.2017.7
  • Izaac J.A., Wang J.B., Abbott P.C., Ma X.S., 2017. Quantum centrality testing on directed graphs via PT-symmetric quantum walks. Physical Review A, 96(3).DOI: 10.1103/PhysRevA.96.032305
  • De Medeiros D.S.V., Campista M.E.M., Mitton N., De Amorim M.D., Pujolle G., 2017. The Power of Quasi-Shortest Paths: ρ-Geodesic Betweenness Centrality. IEEE Transactions on Network Science and Engineering, 4(3), pp.187-200.DOI: 10.1109/TNSE.2017.2708705
  • Huang D., Yu Z., 2017. Dynamic-Sensitive centrality of nodes in temporal networks. Scientific Reports, 7.DOI: 10.1038/srep41454
  • Shao H., Mesbahi M., Li D., Xi Y., 2017. Inferring centrality from network snapshots. Scientific Reports, 7.DOI: 10.1038/srep40642
  • Wang J., Hou X., Li K., Ding Y., 2017. A novel weight neighborhood centrality algorithm for identifying influential spreaders in complex networks. Physica A: Statistical Mechanics and its Applications, 475, pp.88-105.DOI: 10.1016/j.physa.2017.02.007
  • Negahban S., Oh S., Shah D., 2017. Rank centrality: Ranking from pairwise comparisons. Operations Research, 65(1), pp.266-287.DOI: 10.1287/opre.2016.1534
  • Ghanem M., Coriat F., Tabourier L., 2017. Ego-betweenness centrality in link streams. Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2017, , pp.667-674.DOI: 10.1145/3110025.3110158
  • He X., Gao M., Kan M.Y., Wang D., 2017. BiRank: Towards Ranking on Bipartite Graphs. IEEE Transactions on Knowledge and Data Engineering, 29(1), pp.57-71.DOI: 10.1109/TKDE.2016.2611584
  • Fontugne R., Shah A., Aben E., 2017. AS hegemony: A robust metric for as centrality. SIGCOMM Posters and Demos 2017 - Proceedings of the 2017 SIGCOMM Posters and Demos, Part of SIGCOMM 2017, , pp.48-50.DOI: 10.1145/3123878.3131982
  • Garzon C., Pavas A., 2017. Laplacian eigenvector centrality as tool for assessing causality in power quality. 2017 IEEE Manchester PowerTech, Powertech 2017, .DOI: 10.1109/PTC.2017.7981261
  • Wang Z., Pei X., Wang Y., Yao Y., 2017. Ranking the key nodes with temporal degree deviation centrality on complex networks. Proceedings of the 29th Chinese Control and Decision Conference, CCDC 2017, , pp.1484-1489.DOI: 10.1109/CCDC.2017.7978752
  • Tavassoli S., Zweig K.A., 2017. Fuzzy centrality evaluation in complex and multiplex networks. Springer Proceedings in Complexity, , pp.31-43.DOI: 10.1007/978-3-319-54241-6_3
  • Khan J.A., Westphal C., Ghamri-Doudane Y., 2018. A Popularity-aware Centrality Metric for Content Placement in Information Centric Networks. 2018 International Conference on Computing, Networking and Communications, ICNC 2018, , pp.554-560.DOI: 10.1109/ICCNC.2018.8390396
  • Arrigo F., Grindrod P., Higham D., Noferini V., 2018. Non-backtracking walk centrality for directed networks. Journal of Complex Networks, 6(1), pp.54-78.DOI: 10.1093/comnet/cnx025
  • Iannelli F., Mariani M., Sokolov I., 2018. Influencers identification in complex networks through reaction-diffusion dynamics. Physical Review E, 98(6).DOI: 10.1103/PhysRevE.98.062302
  • Qiao T., Shan W., Yu G., Liu C., 2018. A novel entropy-based centrality approach for identifying vital nodes in weighted networks. Entropy, 20(4).DOI: 10.3390/e20040261
  • Sarmento R.P., Cordeiro M., Brazdil P., Gama J., 2018. Efficient incremental laplace centrality algorithm for dynamic networks. Studies in Computational Intelligence, 689, pp.341-352.DOI: 10.1007/978-3-319-72150-7_28
  • Riquelme F., Gonzalez-Cantergiani P., Molinero X., Serna M., 2018. Centrality measure in social networks based on linear threshold model. Knowledge-Based Systems, 140, pp.92-102.DOI: 10.1016/j.knosys.2017.10.029
  • Berahmand K., Bouyer A., Samadi N., 2018. A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks. Chaos, Solitons and Fractals, 110, pp.41-54.DOI: 10.1016/j.chaos.2018.03.014
  • Zhang W., Xu J., Li Y., Zou X., 2018. Detecting Essential Proteins Based on Network Topology, Gene Expression Data, and Gene Ontology Information. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 15(1), pp.109-116.DOI: 10.1109/TCBB.2016.2615931
  • Wang D., Zou X., 2018. A new centrality measure of nodes in multilayer networks under the framework of tensor computation. Applied Mathematical Modelling, 54, pp.46-63.DOI: 10.1016/j.apm.2017.07.012
  • Yang F., Li X., Xu Y., Liu X., Wang J., Zhang Y., Zhang R., Yao Y., 2018. Ranking the spreading influence of nodes in complex networks: An extended weighted degree centrality based on a remaining minimum degree decomposition. Physics Letters, Section A: General, Atomic and Solid State Physics, 382(34), pp.2361-2371.DOI: 10.1016/j.physleta.2018.05.032
  • Wang J., Li C., Xia C., 2018. Improved centrality indicators to characterize the nodal spreading capability in complex networks. Applied Mathematics and Computation, 334, pp.388-400.DOI: 10.1016/j.amc.2018.04.028
  • Salavati C., Abdollahpouri A., Manbari Z., 2018. BridgeRank: A novel fast centrality measure based on local structure of the network. Physica A: Statistical Mechanics and its Applications, 496, pp.635-653.DOI: 10.1016/j.physa.2017.12.087
  • Amano S., Ogawa K., Miyake Y., 2018. Node property of weighted networks considering connectability to nodes within two degrees of separation. Scientific Reports, 8(1).DOI: 10.1038/s41598-018-26781-y
  • Agryzkov T., Pedroche F., Tortosa L., Vicent J.F., 2018. Combining the two-layers pageRank approach with the APA centrality in networks with data. ISPRS International Journal of Geo-Information, 7(12).DOI: 10.3390/ijgi7120480
  • Ghalmane Z., Hassouni M.E., Cherifi H., 2018. Betweenness Centrality for Networks with Non-Overlapping Community Structure. 2018 IEEE Workshop on Complexity in Engineering, COMPENG 2018, .DOI: 10.1109/CompEng.2018.8536229
  • Liu H., Ma C., Xiang B., Tang M., Zhang H., 2018. Identifying multiple influential spreaders based on generalized closeness centrality. Physica A: Statistical Mechanics and its Applications, 492, pp.2237-2248.DOI: 10.1016/j.physa.2017.11.138
  • Li H., Zhang Z., 2018. Kirchhoff index as a measure of edge centrality in weighted networks: Nearly linear time algorithms. Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, , pp.2377-2396.DOI: 10.1137/1.9781611975031.153
  • Zhou X., Liang X., Zhao J., Zhang S., 2018. Cycle Based Network Centrality. Scientific Reports, 8(1).DOI: 10.1038/s41598-018-30249-4
  • Gao, S. and Caines, P.E., 2018, July. Consensus-induced Centrality for Networks of Dynamical Systems. In Proceedings of the 23rd International Symposium on Mathematical Theory of Networks and Systems, Hong Kong, China (pp. 769-775).
  • Ibnoulouafi A., El Haziti M., Cherifi H., 2018. M-Centrality: Identifying key nodes based on global position and local degree variation. Journal of Statistical Mechanics: Theory and Experiment, 2018(7).DOI: 10.1088/1742-5468/aace08
  • Ibnoulouafi A., El Haziti M., 2018. Density centrality: identifying influential nodes based on area density formula. Chaos, Solitons and Fractals, 114, pp.69-80.DOI: 10.1016/j.chaos.2018.06.022
  • Yi, Y., Shan, L., Li, H. and Zhang, Z., 2018, July. Biharmonic distance related centrality for edges in weighted networks. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (pp. 3620-3626).
  • Béres F., Pálovics R., Oláh A., Benczúr A.A., 2018. Temporal walk based centrality metric for graph streams. Applied Network Science, 3(1).DOI: 10.1007/s41109-018-0080-5
  • Yao Y., Xiao X., Zhang C., Xia S., 2018. Classifying quality centrality for source localization in social networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10966 LNCS, pp.295-307.DOI: 10.1007/978-3-319-94289-6_19
  • Alshahrani M., Fuxi Z., Sameh A., Mekouar S., Huang S., 2018. Top-K influential users selection based on combined Katz centrality and propagation probability. 2018 3rd IEEE International Conference on Cloud Computing and Big Data Analysis, ICCCBDA 2018, , pp.52-56.DOI: 10.1109/ICCCBDA.2018.8386486
  • Ding C., Li K., 2018. Centrality ranking in multiplex networks using topologically biased random walks. Neurocomputing, 312, pp.263-275.DOI: 10.1016/j.neucom.2018.05.109
  • Zhou H., Ruan M., Zhu C., Leung V.C.M., Xu S., Huang C.M., 2018. A Time-Ordered Aggregation Model-Based Centrality Metric for Mobile Social Networks. IEEE Access, 6, pp.25588-25599.DOI: 10.1109/ACCESS.2018.2831247
  • Ma Y., Liu M., Zhang P., Qi X., 2018. CS-TOTR: A new vertex centrality method for directed signed networks based on status theory. International Journal of Modern Physics C, 29(5).DOI: 10.1142/S0129183118400028
  • Forouzandeh S., Sheikhahmadi A., Rezaei Aghdam A., Xu S., 2018. New centrality measure for nodes based on user social status and behavior on Facebook. International Journal of Web Information Systems, 14(2), pp.158-176.DOI: 10.1108/IJWIS-07-2017-0053
  • Ivanov S., Gorlushkina N., Ivanova L., 2018. Multi-parametric centrality method for graph network models. AIP Conference Proceedings, 1952.DOI: 10.1063/1.5032005
  • Stella M., De Domenico M., 2018. Distance entropy cartography characterises centrality in complex networks. Entropy, 20(4).DOI: 10.3390/e20040268
  • Giscard P., Wilson R., 2018. Cycle-centrality in economic and biological networks. Studies in Computational Intelligence, 689, pp.14-28.DOI: 10.1007/978-3-319-72150-7_2
  • Zhang Q., Karsai M., Vespignani A., 2018. Link transmission centrality in large-scale social networks. EPJ Data Science, 7(1).DOI: 10.1140/epjds/s13688-018-0162-8
  • Puzis R., Sofer Z., Cohen D., Hugi M., 2018. Embedding-centrality: Generic centrality computation using neural networks. Springer Proceedings in Complexity, (219279), pp.87-97.DOI: 10.1007/978-3-319-73198-8_8
  • Zhai L., Yan X., Zhang G., 2018. Bi-directional h-index: A new measure of node centrality in weighted and directed networks. Journal of Informetrics, 12(1), pp.299-314.DOI: 10.1016/j.joi.2018.01.004
  • Jacobsen K., Tien J., 2018. A generalized inverse for graphs with absorption. Linear Algebra and Its Applications, 537, pp.118-147.DOI: 10.1016/j.laa.2017.09.029
  • Riondato M., Upfal E., 2018. ABRA: Approximating betweenness centrality in static and dynamic graphs with rademacher averages. ACM Transactions on Knowledge Discovery from Data, 12(5).DOI: 10.1145/3208351
  • Cauteruccio, F., Terracina, G., Ursino, D. and Virgili, L., 2019. Redefining Betweenness Centrality in a Multiple IoT Scenario. In AI&IoT@ AI* IA (pp. 16-27).
  • Gao L., Yu S., Li M., Shen Z., Gao Z., 2019. Weighted h-index for identifying influential spreaders. Symmetry, 11(10).DOI: 10.3390/sym11101263
  • Agryzkov T., Tortosa L., Vicent J.F., Wilson R., 2019. A centrality measure for urban networks based on the eigenvector centrality concept. Environment and Planning B: Urban Analytics and City Science, 46(4), pp.668-689.DOI: 10.1177/2399808317724444
  • Syarif A., Abouaissa A., Idoumghar L., Lorenz P., Schott R., Staples G., 2019. New path centrality based on operator calculus approach for wireless sensor network deployment. IEEE Transactions on Emerging Topics in Computing, 7(1), pp.162-173.DOI: 10.1109/TETC.2016.2585045
  • Sotoodeh H., Falahrad M., 2019. Relative Degree Structural Hole Centrality, CRD−SH: A New Centrality Measure in Complex Networks. Journal of Systems Science and Complexity, 32(5), pp.1306-1323.DOI: 10.1007/s11424-018-7331-5
  • Lu P., Dong C., 2019. Ranking the spreading influence of nodes in complex networks based on mixing degree centrality and local structure. International Journal of Modern Physics B, 33(32).DOI: 10.1142/S0217979219503958
  • Vogiatzis, C. and Camur, M.C., 2019. Identification of essential proteins using induced stars in protein–protein interaction networks. INFORMS Journal on Computing, 31(4), pp.703-718.DOI: 10.1287/ijoc.2018.0872
  • Sun H.l., Chen D.b., He J.l., Ch\'ng E., 2019. A voting approach to uncover multiple influential spreaders on weighted networks. Physica A: Statistical Mechanics and its Applications, 519, pp.303-312.DOI: 10.1016/j.physa.2018.12.001
  • Singh A., Singh R., Iyengar S., 2019. Hybrid centrality measures for service coverage problem. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11917 LNCS, pp.81-94.DOI: 10.1007/978-3-030-34980-6_11
  • Glattfelder J., 2019. THE BOW-TIE CENTRALITY: A NOVEL MEASURE for DIRECTED and WEIGHTED NETWORKS with AN INTRINSIC NODE PROPERTY. Advances in Complex Systems, .DOI: 10.1142/S0219525919500188
  • Wang Y., Chen B., Li W., Zhang D., 2019. Influential Node Identification in Command and Control Networks Based on Integral k-Shell. Wireless Communications and Mobile Computing, 2019.DOI: 10.1155/2019/6528431
  • Huang X., Huang W., 2019. Eigenedge: A measure of edge centrality for big graph exploration. Journal of Computer Languages, 55.DOI: 10.1016/j.cola.2019.100925
  • Williams, J., 2019. Identifying sensitive components in infrastructure networks via critical flows. engrXiv.
  • Oggier F., Phetsouvanh S., Datta A., 2019. A split-and-transfer flow based entropic centrality. PeerJ Computer Science, 2019(9).DOI: 10.7717/peerj-cs.220
  • Chanekar P.V., Nozari E., Cortes J., 2019. Network Modification using a Novel Gramian-based Edge Centrality. Proceedings of the IEEE Conference on Decision and Control, 2019-December, pp.1686-1691.DOI: 10.1109/CDC40024.2019.9028860
  • Lv L., Zhang K., Zhang T., Li X., Zhang J., Xue W., 2019. Eigenvector centrality measure based on node similarity for multilayer and temporal networks. IEEE Access, 7, pp.115725-115733.DOI: 10.1109/ACCESS.2019.2936217
  • Roohi L., Rubinstein B.I.P., Teague V., 2019. Differentially-Private Two-Party Egocentric Betweenness Centrality. Proceedings - IEEE INFOCOM, 2019-April(), pp.2233-2241.DOI: 10.1109/INFOCOM.2019.8737405
  • Plana F., Perez J., 2019. QuickCent: A Fast and Frugal Heuristic for Centrality Estimation on Networks. Proceedings - 2018 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2018, (), pp.238-245.DOI: 10.1109/WI.2018.00-84
  • Ma X., Ma Y., 2019. The Local Triangle Structure Centrality Method to Rank Nodes in Networks. Complexity, 2019.DOI: 10.1155/2019/9057194
  • Fushimi T., Saito K., Ikeda T., Kazama K., 2019. A new group centrality measure for maximizing the connectedness of network under uncertain connectivity. Studies in Computational Intelligence, 812, pp.3-14.DOI: 10.1007/978-3-030-05411-3_1
  • Parvandeh S., McKinney B.A., 2019. Epistasisrank and Epistasiskatz: Interaction network centrality methods that integrate prior knowledge networks. Bioinformatics, 35(13), pp.2329-2331.DOI: 10.1093/bioinformatics/bty965
  • Criado R., Flores J., García E., del Amo A.J.G., Pérez Á., Romance M., 2019. On the α-nonbacktracking centrality for complex networks: Existence and limit cases. Journal of Computational and Applied Mathematics, 350, pp.35-45.DOI: 10.1016/j.cam.2018.09.048
  • Espejo R., Lumbreras S., Ramos A., Huang T., Bompard E., 2019. An extended metric for the analysis of power-network vulnerability: The line electrical centrality. 2019 IEEE Milan PowerTech, PowerTech 2019, .DOI: 10.1109/PTC.2019.8810514
  • Chen X., Tan M., Zhao J., Yang T., Wu D., Zhao R., 2019. Identifying influential nodes in complex networks based on a spreading influence related centrality. Physica A: Statistical Mechanics and its Applications, 536.DOI: 10.1016/j.physa.2019.122481
  • Wąs, T., Rahwan, T. and Skibski, O., 2019, July. Random Walk Decay Centrality. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 2197-2204).DOI: 10.1609/aaai.v33i01.33012197
  • Kanwar K., Kaushal S., Kumar H., 2019. A hybrid node ranking technique for finding influential nodes in complex social networks. Library Hi Tech, .DOI: 10.1108/LHT-01-2019-0019
  • Ghalmane Z., Cherifi C., Cherifi H., Hassouni M.E., 2019. Centrality in Complex Networks with Overlapping Community Structure. Scientific Reports, 9(1).DOI: 10.1038/s41598-019-46507-y
  • Zareie A., Sheikhahmadi A., 2019. EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks. Physica A: Statistical Mechanics and its Applications, 514, pp.141-155.DOI: 10.1016/j.physa.2018.09.064
  • Andrade R., Rêgo L., 2019. p-means centrality. Communications in Nonlinear Science and Numerical Simulation, 68, pp.41-55.DOI: 10.1016/j.cnsns.2018.08.002
  • Kumar R., Manuel S. (2019) A Centrality Measure for Directed Networks: m-Ranking Method. In: Özyer T., Bakshi S., Alhajj R. (eds) Social Networks and Surveillance for Society. Lecture Notes in Social Networks. Springer, Cham.DOI: 10.1007/978-3-319-78256-0_7
  • Hellervik A., Nilsson L., Andersson C., 2019. Preferential centrality – A new measure unifying urban activity, attraction and accessibility. Environment and Planning B: Urban Analytics and City Science, 46(7), pp.1331-1346.DOI: 10.1177/2399808318812888
  • Liu G., Yao X., Luo Z., Kang S., Long W., Fan Q., Gao P., 2019. Agglomeration centrality to examine spatial scaling law in cities. Computers, Environment and Urban Systems, 77.DOI: 10.1016/j.compenvurbsys.2019.101357
  • Pontiveros B.B.F., Steichen M., State R., 2019. Mint Centrality: A Centrality Measure for the Bitcoin Transaction Graph. ICBC 2019 - IEEE International Conference on Blockchain and Cryptocurrency, , pp.159-162.DOI: 10.1109/BLOC.2019.8751401
  • Vega-Oliveros D.A., Gomes P.S., E. Milios E., Berton L., 2019. A multi-centrality index for graph-based keyword extraction. Information Processing and Management, 56(6).DOI: 10.1016/j.ipm.2019.102063
  • Pedroche F., Tortosa L., Vicent J.F., 2019. An eigenvector centrality for multiplex networks with data. Symmetry, 11(6).DOI: 10.3390/sym11060763
  • Donato C., Lo Giudice P., Marretta R., Ursino D., Virgili L., 2019. A well-tailored centrality measure for evaluating patents and their citations. Journal of Documentation, 75(4), pp.750-772.DOI: 10.1108/JD-10-2018-0168
  • Li X., Zhou S., Liu J., Lian G., Chen G., Lin C.W., 2019. Communities detection in social network based on local edge centrality. Physica A: Statistical Mechanics and its Applications, 531.DOI: 10.1016/j.physa.2019.121552
  • Zhang B., Zhang L., Mu C., Zhao Q., Song Q., Hong X., 2019. A most influential node group discovery method for influence maximization in social networks: A trust-based perspective. Data and Knowledge Engineering, 121, pp.71-87.DOI: 10.1016/j.datak.2019.05.001
  • Ma Y., Cao Z., Qi X., 2019. Quasi-Laplacian centrality: A new vertex centrality measurement based on Quasi-Laplacian energy of networks. Physica A: Statistical Mechanics and its Applications, 527.DOI: 10.1016/j.physa.2019.121130
  • Herzog S.M., Hills T.T., 2019. Mediation Centrality in Adversarial Policy Networks. Complexity, 2019.DOI: 10.1155/2019/1918504
  • Senturk I.F., 2019. Partition-aware centrality measures for connectivity restoration in mobile sensor networks. International Journal of Sensor Networks, 30(1), pp.1-12.DOI: 10.1504/IJSNET.2019.099218
  • Kwon H., Choi Y.H., Lee J.M., 2019. A Physarum Centrality Measure of the Human Brain Network. Scientific Reports, 9(1).DOI: 10.1038/s41598-019-42322-7
  • Park J., Hescott B.J., Slonim D.K., 2019. Pathway centrality in protein interaction networks identifies putative functional mediating pathways in pulmonary disease. Scientific Reports, 9(1).DOI: 10.1038/s41598-019-42299-3
  • Lv L., Zhang K., Bardou D., Zhang T., Zhang J., Cai Y., Jiang T., 2019. A new centrality measure based on random walks for multilayer networks under the framework of tensor computation. Physica A: Statistical Mechanics and its Applications, 526.DOI: 10.1016/j.physa.2019.04.236
  • Dai Z., Li P., Chen Y., Zhang K., Zhang J., 2019. Influential node ranking via randomized spanning trees. Physica A: Statistical Mechanics and its Applications, 526.DOI: 10.1016/j.physa.2019.02.047
  • Skibski O., Rahwan T., Michalak T., Yokoo M., 2019. Attachment centrality: Measure for connectivity in networks. Artificial Intelligence, 274, pp.151-179.DOI: 10.1016/j.artint.2019.03.002
  • Zaoli S., Mazzarisi P., Lillo F., 2019. Trip Centrality: walking on a temporal multiplex with non-instantaneous link travel time. Scientific Reports, 9(1).DOI: 10.1038/s41598-019-47115-6
  • Wang Y., Wang S., Deng Y., 2019. A modified efficiency centrality to identify influential nodes in weighted networks. Pramana - Journal of Physics, 92(4).DOI: 10.1007/s12043-019-1727-1
  • Li B., Gao Z., Shan X., Zhou W., Ferrara E., 2019. Sorec: A social-relation based centrality measure in mobile social networks. 2019 26th International Conference on Telecommunications, ICT 2019, , pp.485-489.DOI: 10.1109/ICT.2019.8798844
  • Agryzkov T., Curado M., Pedroche F., Tortosa L., Vicent J.F., 2019. Extending the adapted PageRank algorithm centrality to multiplex networks with data using the PageRank two-layer approach. Symmetry, 11(2).DOI: 10.3390/sym11020284
  • Lv L., Zhang K., Bardou D., Zhang T., Cai Y., 2019. A new centrality measure based on topologically biased random walks for multilayer networks. Journal of the Physical Society of Japan, 88(2).DOI: 10.7566/JPSJ.88.024010
  • Oliva G., Esposito Amideo A., Starita S., Setola R., Scaparra M.P., 2020. Aggregating centrality rankings: A novel approach to detect critical infrastructure vulnerabilities. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11777 LNCS, pp.57-68.DOI: 10.1007/978-3-030-37670-3_5
  • Zhang, Y., Shao, C., He, S. and Gao, J., 2020. Resilience centrality in complex networks. Physical Review E, 101(2), p.022304.DOI: 10.1103/PhysRevE.101.022304
  • Kumar S., Panda B.S., 2020. Identifying influential nodes in Social Networks: Neighborhood Coreness based voting approach. Physica A: Statistical Mechanics and its Applications, 553.DOI: 10.1016/j.physa.2020.124215
  • Gurfinkel, A.J. and Rikvold, P.A., 2020. A Current-Flow Centrality With Adjustable Reach. arXiv preprint arXiv:2005.14356.
  • Fan M., Cao Z., Cheng J., Yang F., Qi X., 2020. Degree-like centrality with structural zeroes or ones: When is a neighbor not a neighbor?. Social Networks, 63, pp.38-46.DOI: 10.1016/j.socnet.2020.05.002
  • Magelinski, T., Bartulovic, M. and Carley, K.M., 2020. Modularity-Impact: a Signed Group Centrality Measure for Complex Networks. arXiv preprint arXiv:2003.00056.
  • Salavaty, Abbas and Ramialison, Mirana and Currie, Peter D., IHS; An Integrative Method for the Identification of Network Hubs. Available at SSRN: https://ssrn.com/abstract=3565980 or http://dx.doi.org/10.2139/ssrn.3565980 DOI: 10.2139/ssrn.3565980
  • Zareie A., Sheikhahmadi A., Jalili M., Fasaei M.S.K., 2020. Finding influential nodes in social networks based on neighborhood correlation coefficient. Knowledge-Based Systems, 194.DOI: 10.1016/j.knosys.2020.105580
  • Ni C., Yang J., Kong D., 2020. Sequential seeding strategy for social influence diffusion with improved entropy-based centrality. Physica A: Statistical Mechanics and its Applications, 545.DOI: 10.1016/j.physa.2019.123659
  • Duron C., 2020. Heatmap centrality: A new measure to identify super-spreader nodes in scale-free networks. PLoS ONE, 15(7 July).DOI: 10.1371/journal.pone.0235690
  • Naderi Yeganeh P., Naderi Yeganeh P., Richardson C., Saule E., Loraine A., Taghi Mostafavi M., 2020. Revisiting the use of graph centrality models in biological pathway analysis. BioData Mining, 13(1).DOI: 10.1186/s13040-020-00214-x
  • Lyu T., Sun F., Zhang Y., 2020. Node Conductance: A Scalable Node Centrality Measure on Big Networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12085 LNAI, pp.529-541.DOI: 10.1007/978-3-030-47436-2_40
  • Das K., Samanta S., De K., Pal M., 2020. Complete neighbourhood centrality and its application. 4th International Conference on Computational Intelligence and Networks, CINE 2020, .DOI: 10.1109/CINE48825.2020.234386
  • Carrizosa E., Marin A., Pelegrin M., 2020. Spotting Key Members in Networks: Clustering-Embedded Eigenvector Centrality. IEEE Systems Journal, 14(3), pp.3916-3925.DOI: 10.1109/JSYST.2020.2982266
  • Zhao J., Song Y., Deng Y., 2020. A novel model to identify the influential nodes: Evidence theory centrality. IEEE Access, 8, pp.46773-46780.DOI: 10.1109/ACCESS.2020.2978142
  • Şimşek M., Meyerhenke H., 2020. Combined centrality measures for an improved characterization of influence spread in social networks. Journal of Complex Networks, 8(1).DOI: 10.1093/comnet/cnz048
  • Lu P., Yu J.J., 2020. A mixed clustering coefficient centrality for identifying essential proteins. International Journal of Modern Physics B, 34(10).DOI: 10.1142/S0217979220500903
  • Riveros C., Salas J., 2020. A family of centrality measures for graph data based on subgraphs. Leibniz International Proceedings in Informatics, LIPIcs, 155.DOI: 10.4230/LIPIcs.ICDT.2020.23
  • Lee K.H., Kim M.H., 2020. Linearization of dependency and sampling for participation-based betweenness centrality in very large b-hypergraphs. ACM Transactions on Knowledge Discovery from Data, 14(3).DOI: 10.1145/3375399
  • Lu P., Dong C., 2020. EMH: Extended Mixing H-index centrality for identification important users in social networks based on neighborhood diversity. Modern Physics Letters B, 34(26).DOI: 10.1142/S021798492050284X
  • Giustolisi O., Ridolfi L., Simone A., 2020. Embedding the intrinsic relevance of vertices in network analysis: the case of centrality metrics. Scientific Reports, 10(1).DOI: 10.1038/s41598-020-60151-x
  • Fronzetti Colladon A., Naldi M., 2020. Distinctiveness centrality in social networks. PLoS ONE, 15(5).DOI: 10.1371/journal.pone.0233276
  • Akgün M.K., Tural M.K., 2020. k-step betweenness centrality. Computational and Mathematical Organization Theory, 26(1), pp.55-87.DOI: 10.1007/s10588-019-09301-9
  • Clemente G.P., Cornaro A., 2020. A novel measure of edge and vertex centrality for assessing robustness in complex networks. Soft Computing, 24(18), pp.13687-13704.DOI: 10.1007/s00500-019-04470-w
  • Liu A., Porter M.A., 2020. Spatial strength centrality and the effect of spatial embeddings on network architecture. Physical Review E, 101(6).DOI: 10.1103/PhysRevE.101.062305
  • Salavaty, A., Ramialison, M. and Currie, P.D., 2020. Integrated value of influence: an integrative method for the identification of the most influential nodes within networks. Patterns, 1(5), p.100052.DOI: 10.1016/j.patter.2020.100052
  • Li G., Li M., Wang J., Li Y., Pan Y., 2020. United Neighborhood Closeness Centrality and Orthology for Predicting Essential Proteins. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17(4), pp.1451-1458.DOI: 10.1109/TCBB.2018.2889978
  • Ibrahim M.H., Missaoui R., Vaillancourt J., 2020. Cross-Face Centrality: A New Measure for Identifying Key Nodes in Networks Based on Formal Concept Analysis. IEEE Access, 8, pp.206901-206913.DOI: 10.1109/ACCESS.2020.3038306
  • Mazalov V.V., Khitraya V.A., 2021. A Modified Myerson Value for Determining the Centrality of Graph Vertices. Automation and Remote Control, 82(1), pp.145-159.DOI: 10.1134/S0005117921010100
  • De la Cruz Cabrera O., Matar M., Reichel L., 2021. Centrality measures for node-weighted networks via line graphs and the matrix exponential. Numerical Algorithms, .DOI: 10.1007/s11075-020-01050-0